Approximating Matrices with Multiple Symmetries

نویسندگان

  • Charles Van Loan
  • Joseph Vokt
چکیده

Abstract. If a tensor with various symmetries is properly unfolded, then the resulting matrix inherits those symmetries. As tensor computations become increasingly important it is imperative that we develop efficient structure preserving methods for matrices with multiple symmetries. In this paper we consider how to exploit and preserve structure in the pivoted Cholesky factorization when approximating a matrix A that is both symmetric (A = AT ) and what we call perfect shuffle symmetric, or perf-symmetric. The latter property means that A = ΠAΠ where Π is a permutation with the property that Πv = v if v is the vec of a symmetric matrix and Πv = −v if v is the vec of a skew-symmetric matrix. Matrices with this structure can arise when an order-4 tensor A is unfolded and its elements satisfy A(i1, i2, i3, i4) = A(i2, i1, i3, i4) = A(i1, i2, i4, i3) = A(i3, i4, i1, i2). This is the case in certain quantum chemistry applications where the tensor entries are electronic repulsion integrals. Our technique involves a closed-form block diagonalization followed by one or two halfsized pivoted Cholesky factorizations. This framework allows for a lazy evaluation feature that is important if the entries in A are expensive to compute. In addition to being a structure preserving rank reduction technique, we find that this approach for obtaining the Cholesky factorization reduces the work by up to a factor of 4.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetries and Reversing Symmetries of Toral Automorphisms

Toral automorphisms, represented by unimodular integer matrices, are investigated with respect to their symmetries and reversing symmetries. We characterize the symmetry groups of GL(n,Z) matrices with simple spectrum through their connection with unit groups in orders of algebraic number fields. For the question of reversibility, we derive necessary conditions in terms of the characteristic po...

متن کامل

Further results on discrete unitary invariance

In arXiv:1607.06679, Marcus proved that certain functions of multiple matrices, when summed over the symmetries of the cube, decompose into functions of the original matrices. In this note, we generalize the results from the Marcus paper to a larger class of functions of multiple matrices. We also answer a problem posed in the Marcus paper. Marcus [1] exhibited certain functions that take multi...

متن کامل

THE USE OF SEMI INHERITED LU FACTORIZATION OF MATRICES IN INTERPOLATION OF DATA

The polynomial interpolation in one dimensional space R is an important method to approximate the functions. The Lagrange and Newton methods are two well known types of interpolations. In this work, we describe the semi inherited interpolation for approximating the values of a function. In this case, the interpolation matrix has the semi inherited LU factorization.

متن کامل

A Diffusion Equation with Exponential Nonlinearity Recant Developments

The purpose of this paper is to analyze in detail a special nonlinear partial differential equation (nPDE) of the second order which is important in physical, chemical and technical applications. The present nPDE describes nonlinear diffusion and is of interest in several parts of physics, chemistry and engineering problems alike. Since nature is not linear intrinsically the nonlinear case is t...

متن کامل

Ela Comparison of Congruences and Strict Equivalences for Real, Complex, and Quaternionic Matrix Pencils with Symmetries∗

The equivalence relations of strict equivalence and congruence of real and complex matrix pencils with symmetries are compared, depending on whether the congruence matrices are real, complex, or quaternionic. The obtained results are applied to comparison of congruences of matrices, over the reals, the complexes, and the quaternions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2015